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OBJECTIVE — Recent studies have drawn attention to the adverse effects of ambient air
pollutants such as particulate matter 2.5 (PM2.5) on human health. We evaluated the association
between PM2.5 exposure and diabetes prevalence in the U.S. and explored factors that may
influence this relationship.

RESEARCH DESIGN AND METHODS — The relationship between PM2.5 levels and
diagnosed diabetes prevalence in the U.S. was assessed by multivariate regression models at the
county level using data obtained from both the Centers for Disease Control and Prevention
(CDC) and U.S. Environmental Protection Agency (EPA) for years 2004 and 2005. Covariates
including obesity rates, population density, ethnicity, income, education, and health insurance
were collected from the U.S. Census Bureau and the CDC.

RESULTS — Diabetes prevalence increases with increasing PM2.5 concentrations, with a 1%
increase in diabetes prevalence seen with a 10 �g/m3 increase in PM2.5 exposure (2004: � �
0.77 [95% CI 0.39–1.25], P � 0.001; 2005: � � 0.81 [0.48–1.07], P � 0.001). This finding was
confirmed for each study year in both univariate and multivariate models. The relationship
remained consistent and significant when different estimates of PM2.5 exposure were used. Even
for counties within guidelines for EPA PM2.5 exposure limits, those with the highest exposure
showed a �20% increase in diabetes prevalence compared with that for those with the lowest
levels of PM2.5, an association that persisted after controlling for diabetes risk factors.

CONCLUSIONS — Our results suggest PM2.5 may contribute to increased diabetes preva-
lence in the adult U.S. population. These findings add to the growing evidence that air pollution
is a risk factor for diabetes.
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O ver the past 15 years diabetes prev-
alence has more than doubled in
the U.S. to �24 million people (1).

The impact of environmental pollution on
diabetes risk remains incompletely un-
derstood. Air pollution has long been rec-
ognized as detrimental to health,
contributing to respiratory and cardiovas-
cular diseases (2). In 2004, the American
Heart Association concluded that short-
term exposure to particulate matter con-
tributes to increased hospital admissions
and cardiovascular mortality (2). Studies

suggest that diabetic patients are espe-
cially sensitive to pollution-triggered car-
diovascular events (3,4). During periods
of high pollution, diabetic patients dem-
onstrate greater impairment of vascular
reactivity (3) and doubled rates of hospi-
tal admission for heart disease (5).

Environmental pollution, especially
particulate matter between 0.1 and 2.5
�m in size (PM2.5), may be a neglected
risk factor for diabetes (6,7). As a main
component of haze, smoke, and motor
vehicle exhaust, PM2.5 is dangerous in

part because of its small size and ability to
invade critical human organs in the respi-
ratory and vascular systems (8). Exposure
to higher levels of air pollution exagger-
ates adipose inflammation and insulin re-
sistance in a mouse model of diet-induced
obesity. In diabetic patients, plasma in-
flammatory markers increase in response
to higher PM2.5 exposure (4,9). The pres-
ence of a large-scale population relation-
ship between air pollution and diabetes
risk has not been reported. Thus, the ob-
jective of this study was to evaluate the
association between ambient air pollution
exposure and adult diabetes prevalence in
the U.S. At the county level in the U.S., we
assessed the relationship between PM2.5,
diabetes prevalence, and diabetes risk fac-
tors for the years 2004 and 2005. We hy-
pothesized that higher PM2.5 levels
would be associated with higher diabetes
prevalence, and this relationship would
be independent of multiple socioeco-
nomic and behavioral risk factors typi-
cally associated with diabetes.

RESEARCH DESIGN AND
METHODS

Particulate matter
Data for the annual mean level of PM2.5
were obtained from the U.S. Environmen-
tal Protection Agency (EPA) for 2004 and
2005. We used data for both maximum
recorded annual weighted mean by
county and the average annual weighted
mean of all monitors in each county (10).
Because ground monitor information is
limited to �700 counties, we also used
the EPA’s more recently available statisti-
cally fused air model of PM2.5 data from
the Landscape Characterization Branch
(11). Data were imported into SAS (ver-
sion 10.2.1; SAS Institute, Cary, NC) with
which an annual mean was generated for
each grid point. This value was then
transformed into raster surface, generat-
ing an annual mean by county by using
spatial analyst and zonal statistics within
ArcGIS (version 9.3; Environmental Sys-
tems Research Institute Inc., Redlands,
CA). The average of all grid cells in each
county was used for the primary analysis,
whereas the greatest PM2.5 grid cell by
county, considered the highest annual ex-
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posure, was used for confirmatory
analyses.

Diabetes prevalence
We used county-level prevalence values
of diagnosed diabetes for 2004 and 2005
created by the National Diabetes Surveil-
lance System at the CDC (12). These data
are based on the CDC’s Behavioral Risk
Factor Surveillance System (BRFSS) and
represent percentage of the population
�20 years who report diagnosed diabe-
tes. BRFSS is a monthly telephone survey
of the adult U.S. population. Bayesian
multilevel modeling techniques and
BRFSS diagnosed diabetes data from
2003, 2004, and 2005 were used to create
county-level estimates of diagnosed dia-
betes prevalence in 2004 and similarly for
2005 (12). The CDC used 3-year averag-
ing to increase statistical strength and re-
duce bias by increasing the sample size of
the population surveyed in each individ-
ual county (13).

Diabetes risk factors
To examine the impact of diabetes risk-
factors as potential confounders, we used
county-level prevalence for obesity (de-
fined as BMI �30 kg/m2), physical activ-
ity from adults who exercised, outside of
their job, in the past month (herein de-
noted “physical activity”), and fast food
establishment density from the CDC’s
BRFSS county-level data (14). We created
3-year estimates of each BRFSS sourced
covariate, so that 2004 was an assembly of
2003, 2004, and 2005 survey responses,
and created similar data for 2005. This
allowed us to improve the statistical
strength of the model through increased
county sample size and to remain consis-
tent with the diabetes prevalence data,
which also uses 3-year averages. Fast food
establishment density data were only
available for 2006. Because of the smaller
survey sample sizes of the BRFSS datasets
in less populated counties, we separately
analyzed only those counties with obesity
and physical activity survey sample size of
�25 respondents. For our primary anal-
ysis, we included only counties with �25
respondents, whereas for confirmatory
analysis all counties were included.

Socioeconomic covariates
For both 2005 and 2004 analyses, we
used the U.S. Census American Commu-
nity Survey (ACS) 1-year measures as the
primary dataset because of its consistency
with our analysis year. ACS is method-
ologically similar to Census 2000, al-

though it is based on a smaller sample size
(15). Socioeconomic covariate data were
obtained from the ACS including median
age, per capita income, percent male sex,
percentage of population aged �25 years
with a high school or general equivalency
degree, and percent Hispanic, Asian, Na-
tive American, African American, and
Caucasian. The census categorizes ethnic-
ity by self-identification as well as by
whether someone identifies as one group
alone or more than one group. We used
only those who identified as one ethnic
group. Note that the census classifies
mixed ethnic group categories, such as
Hispanic, as one group when in reality
this group comprises diverse populations
including Mexican, Puerto Rican, Spanish
American, and others, as do other groups.
Also, note that the model used each ethnic
group as its own covariate. In addition,
we used health insurance data from the
2000 and 2005 versions of the Small Area
Health Insurance Estimates from the U.S.
Census. The Small Area Health Insurance
Estimates is a two-level regression model
of the uninsured population by county
based on the Annual Social and Economic
Supplement of the Current Population
Survey as well as Internal Revenue Service
tax returns, food stamp participants,
Medicaid, and State Children’s Health In-
surance Program participants (16). We
used annual U.S. census population esti-
mates divided by the square miles per
county to derive the population density of
each county (17). Confirmatory analyses
were performed both with 2000 Census
and 2005 3-year ACS measures for the
socioeconomic covariates listed above.

Data analysis
To assess the relationship between the mi-
crograms per meter cubed weighted
annual mean for PM2.5 exposure (inde-
pendent) and diabetes prevalence (de-
pendent), multivariate linear regression
models were developed using the ordi-
nary least squares method, controlling for
socioeconomic covariates, behavioral risk
factors, population density, and latitude
to correct for unobserved geospatial bi-
ases. We used the 36-km PM2.5 statisti-
cally fused air model dataset for our
primary analysis because it covers the en-
tire contiguous U.S. Confirmatory analy-
ses substituted in the 12-km and ground-
level PM2.5 datasets. All datasets were
normally distributed, with Kolmogorov-
Smirnov results, histograms, box plots,
and normal probability plots all concor-
dant. Distribution analyses were per-

formed in SAS. Testing of standard data
transformations (including logarithmic)
provided no added benefit to the models
compared with the linear fitting. Finally, a
risk factor analysis was performed by
comparing mean diabetes prevalence in
counties from the bottom quartile of
PM2.5 levels with counties from the up-
per quartile of PM2.5 levels. To elucidate
the difference in diabetes prevalence for
counties with PM2.5 levels in legal com-
pliance with EPA limits, only counties be-
low the EPA limit of 15 �g/m3 were
selected for additional evaluation includ-
ing risk factor analysis (18). Because dia-
betes data covered all U.S. counties,
analyses were limited only by the EPA
data coverage and the extent of the covari-
ates. Herein the analysis will be referred to
by their EPA source data, such that the
36-km Bayesian model is denoted “36-km
model” (similarly for 12-km model) and
EPA surface monitor data are denoted
“ground.” Statistical and exploratory
analyses were performed in SYSTAT (ver-
sion 12; Cranes Software International,
Bangalore, India).

RESULTS — Univariate linear regres-
sion of the 36-km model resulted in a
strong and significant association be-
tween mean PM2.5 levels and diabetes
prevalence by county during both calen-
dar year 2004 (� � 1.9 [95% CI 1.71–
2.05]; P � 0.001; n � 3,082 counties)
and 2005 (� � 1.9; [1.69–2.07]; P �
0.001; n � 3,082), with regression values
interpreted as percent increase in overall
diabetes prevalence per increase of 10 �g/
m3. Nearly identical results were found by
using the county maximum PM2.5 val-
ues. Given a hypothetical population of
1,000,000 people, our model suggests
that for every 10 �g/m3 increase of
PM2.5, there could be a resulting increase
of �10,000 diagnosed cases of diabetes
or an overall increase in diabetes preva-
lence of �1%/10 �g/m3.

Figure 1A presents a map of diabetes
prevalence and PM2.5 levels by county.
The association identified in univariate
analysis remained statistically strong, al-
though the magnitude of the impact less-
ened slightly in the multivariate model for
both years (2004: � � 0.78 [95% CI
0.39–1.25]; P � 0.001; n � 241; 2005:
� � 0.81; [0.48–1.07]; P � 0.001; n �
766). Analysis of the 36-km model with
two sets of covariates as well as maximum
PM2.5 values resulted in consistent and
significant results (Table 1). Stepwise
analysis in the multivariate linear regres-
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sion model indicated a good model fit for
our dataset with adjusted squared multi-
ple R (ASMR) increasing from 0.73 with-
out PM2.5 to 0.74 with the addition of the
PM2.5 36-km model dataset, with consis-
tent results for the 12-km (ASMR � 0.75)
and ground (ASMR � 0.78) datasets.

Overall, controlling for diabetes risk
covariates did not alter the significance of
the relationship, although various factors
did alter the magnitude of impact of
PM2.5 on diabetes. Obesity was strongly
related to diabetes prevalence as ex-
pected. The modest relationship between

obesity and PM2.5 levels (� � 0.004, P �
0.01) had very little effect on the relation-
ship between pollution exposure and di-
abetes prevalence. Likewise, physical
activity did not alter the significance level
and only marginally decreased the magni-
tude of the relationship between diabetes
and PM2.5. Removal of Asian, Native
American, and Hispanic ethnic groups
(ethnic groups at high risk for diabetes) as
covariates from the model but including
all counties increased the magnitude of
impact of PM2.5. When physical activity
and obesity were removed from the

model, the impact of the ethnic groups
became less pronounced. When we re-
moved behavioral risk factors, included
all counties, and used select covariates
(socioeconomic factors, population den-
sity, and African American and Caucasian
races) we found that (2004: � � 1.27;
[0.93–1.69], P � 0.001; n � 242; 2005:
� � 1.43; [1.18–1.70]; P � 0.001; n �
766 counties).

Given the clustering of minority pop-
ulations in areas with greater PM2.5 ex-
posure in the southern states and to
further examine the potential confound-

Figure 1—A: 2005 Diabetes prevalence and PM2.5 annual mean concentration for U.S. counties: diabetes prevalence quartiles (left) and PM2.5
annual mean concentration quartiles (right) for all contiguous U.S. counties. B: Diabetes prevalence rates per each quartile of PM2.5 for counties
within the EPA PM2.5 limit (�15 �g/m3), using the 36-km PM2.5 model. The data are unadjusted for the previously mentioned covariates. Diabetes
prevalence values are labeled on each bar. The quartile cut points for PM2.5 are listed in the table on the x-axis. *Statistically significant result: P �
0.05.

Association of particulate matter and diabetes

2198 DIABETES CARE, VOLUME 33, NUMBER 10, OCTOBER 2010 care.diabetesjournals.org



ing effects of race on the model, an anal-
ysis was performed including only those
counties with a high percentage of Cauca-
sian inhabitants. With use of ACS 1-year
covariates, those counties with �90%
Caucasian population (top quartile for
Caucasian race) showed a consistent and
significant relationship between diabetes
and PM2.5 (2005: � � 0.86; [95% CI
0.22–1.64]; P � 0.008; n � 227 coun-
ties). When examining counties with 95%
Caucasian inhabitants (top 10%), we no-
ticed a clustering in the Midwest along
similar latitudes, introducing geospatial
bias. Thus, we eliminated latitude from
the multivariate model and again demon-
strated a significant association between
PM2.5 and diabetes prevalence (2005:
� � 1.1; [0.59–1.52]; P � 0.001; n �
188). Although we had limited data to
perform this analysis for counties report-
ing predominantly (�97%) Caucasian in-
habitants, similar nonsignificant trends of
increasing PM2.5 and increasing diabetes
prevalence were present.

Cursory examination of the geospa-
tial interaction between diabetes preva-
lence and PM2.5 levels raised concerns
that regions in the Southeastern and Cen-
tral U.S. could account for the observed
interrelationship. In addition to analysis
of covariates associated with ethnicity,
obesity, fast-food chains, and other po-
tential confounders, using U.S. Census
Divisions, we analyzed the relationship
after eliminating, individually and to-
gether, the East South, East North Cen-

tral, and the South Atlantic Census
Divisions (19). The relationship remained
consistent and significant with ACS
1-year covariates until all three regions
were eliminated together (2005: � �
0.24, [95% CI 0.26–0.71], P � 0.28, n �
393). However, to correct for sample size
bias, Census 2000 covariates were used,
and again we found a consistent and sig-
nificant relationship between PM2.5 ex-
posure and diabetes prevalence even
when all three regions were eliminated

(2005: � � 0.86, [0.61–1.11], P � 0.001,
n � 1,014).

Confirmatory analysis using both the
12-km model and ground data again re-
sulted in consistent and highly significant
findings (Table 1). Analysis demonstrated
only negligible differences between use of
maximum PM2.5 values and average
PM2.5 values by county. There were large
differences in diabetes prevalence be-
tween counties (Table 2, Fig. 1B). How-
ever, a consistent increase in diabetes
prevalence was observed between coun-
ties in the bottom quartile compared with
those in the top quartile of PM2.5 expo-
sure, with populations in more polluted
counties having a �20% higher mean di-
abetes prevalence. Importantly, only
counties below the EPA NAAQS limit of
15 �g/m3 were used for the quartile
analysis.

CONCLUSIONS — We demonstrate
a strong association between PM2.5 expo-
sure and diabetes prevalence, suggesting
that ambient air pollution may contribute
to the increased prevalence of diabetes in
the adult U.S. population. Advances in
both data collection and statistical tech-
niques (20) permitted this first large-scale
population-based analysis of the relation-
ship between PM2.5 and diabetes preva-
lence. Our findings are consistent with
the few studies of geographically small ar-
eas that have also suggested a relationship
between diabetes and air pollution from
either road traffic or industrial facilities

Table 1—All PM2.5 models: multivariate results for 2004 and 2005

PM
model Year Covariates* � �95%CI�† n P value

36-km 2004 Census 2000 1.15 �1.02–1.32� 2,754 �0.001
36-km 2005 Census 2000 0.92 �0.75–1.13� 2,126 �0.001
36-km 2004 ACS 1-year 0.78 �0.39–1.25� 241 �0.001
36-km 2005 ACS 1-year 0.81 �0.48–1.07� 766 �0.001
12-km 2004 Census 2000 1.12 �0.95–1.31� 2,501 �0.001
12-km 2005 Census 2000 0.90 �0.78–1.12� 1,945 �0.001
12-km 2004 ACS 1-year 0.96 �0.50–1.37� 198 �0.001
12-km 2005 ACS 1-year 1.06 �0.78–1.27� 665 �0.001
Ground 2004 Census 2000 1.10 �0.81–1.51� 583 �0.001
Ground 2005 Census 2000 1.02 �0.77–1.34� 556 �0.001
Ground 2004 ACS 1-year 0.83 �0.25–1.32� 211 �0.001
Ground 2005 ACS 1-year 1.00 �0.73–1.36� 428 �0.001

Relationship between PM2.5 exposure estimates and diabetes prevalence from the multivariate model using
ACS 1-year socioeconomic covariates or Census 2000 socioeconomic covariates. *Both of the covariate
models used the following for the PM2.5 model year: median age, percentage of men, per capita income,
percentage of population �25 years with a high school diploma or general equivalency degree, percentage
of Hispanics, Asians, Native Americans, African Americans, and Caucasians, health insurance, obesity,
physical activity, latitude, and population density. †The � coefficient represents the increase in the percent-
age of diabetes prevalence for every PM2.5 increase of 10 �g/m3.

Table 2—Risk analysis: comparison of mean diabetes prevalence between counties in the
lowest and highest quartiles for PM2.5 levels in 2004 and 2005

PM
model Year Quartile

Mean PM2.5
(�g/m3) by
quartile*

Mean �95%CI�
diabetes

prevalence†

Increased
diabetes

prevalence (%)

36-km 2004 Lowest 7.71 7.51 �7.41–7.62�‡
36-km 2004 Highest 12.11 8.95 �8.85–9.06�‡ 19.11
36-km 2005 Lowest 7.69 7.75 �7.64–7.87�‡
36-km 2005 Highest 12.75 9.35 �9.23–9.47�‡ 20.57
12-km 2004 Lowest 7.78 7.78 �7.66–7.89�‡
12-km 2004 Highest 11.77 9.03 �8.92–9.14�‡ 16.11
12-km 2005 Lowest 8.41 8.03 �7.91–8.16�‡
12-km 2005 Highest 12.38 9.37 �9.26–9.49�‡ 16.72
Ground 2004 Lowest 9.43 6.78 �6.54–7.02�‡
Ground 2004 Highest 12.69 8.43 �8.19–8.69�‡ 24.42
Ground 2005 Lowest 9.51 6.95 �6.67–7.22�‡
Ground 2005 Highest 13.65 8.86 �8.57–9.15�‡ 27.59

Comparison of mean diabetes prevalence in the lowest and highest PM2.5 quartiles for all counties within the
EPA PM2.5 limit (�15 �g/m3). The data are unadjusted for the previously mentioned covariates. *Mean
PM2.5 value for the lowest quartile is presented first, followed by mean PM2.5 value for the highest quartile
for the same year and model. †Represents diabetes prevalence of selected PM quartile. ‡Statistically signif-
icant result: P � 0.01.
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(21–23). Our results are also consistent
with previous evidence from animal mod-
els (9). A growing body of epidemiologi-
cal and laboratory-based literature
connects air pollution, particularly
PM2.5, and deterioration of cardiovascu-
lar health (2). Therefore, although unique
by scope, our study is not without
precedent.

Chronic inflammation has been sug-
gested to be a mechanism promoting in-
creased insulin resistance in mice with
diet-induced obesity after increased
PM2.5 exposure (9). Sun et al. (9) dem-
onstrated that whole-body glucose ho-
meostasis was reduced with PM2.5
exposure, whereas proinflammatory M1
adipose tissue macrophage activity was
upregulated and anti-inflammatory M2
adipose tissue macrophage activity was
suppressed. Furthermore, pollutants pro-
mote catabolic inflammatory action while
inhibiting anabolic responses to insulin
(24). In contrast, lean mice show little
change in insulin sensitivity or lipid pro-
file in response to PM2.5 exposure (9).
Thus, increasing exposure to ambient air
pollution in Westernized countries may
be particularly problematic in the setting
of the obesity epidemic. Similarly, O’Neill
et al. (4) found that obese diabetic pa-
tients demonstrated a greater inflamma-
tory response than nonobese diabetic
patients upon exposure to pollutants.
Taken together, these studies suggest that
obesity may play a critical permissive role
in priming the body for pollution-
induced inflammation and disordered
metabolism. Although our study cannot
provide additional insights on mecha-
nisms underlying the association or con-
firm causality, we clearly demonstrated a
strong relationship between PM2.5 expo-
sure and diabetes prevalence within our
modeled dataset similar to that in other
studies (4,9,23,24).

Throughout our multiple datasets
and models, we find a consistent and sig-
nificant association between ambient air
pollution PM2.5 and diabetes prevalence.
Additions of behavioral, ethnic, and so-
cioeconomic covariates only modestly al-
ter the magnitude of the impact of PM2.5
on diabetes prevalence. In addition, re-
moval of highly polluted regions with
high diabetes prevalence did not alter the
relationship in a significant manner.

Although we found that increased
PM2.5 was associated with increased dia-
betes prevalence, our design does not al-
low us to conclude whether this is a causal
relationship. Ecological studies assume

that characteristics of a study group
within a certain area represent character-
istics of the entire population for that
area. A potential ecological bias would be
most prominent within our study for di-
abetes, socioeconomic, and assessed be-
havioral risk factor covariates because
they are based on aggregate survey data-
sets. It is challenging to exclude potential
confounding introduced earlier in time,
including diabetic or pre-diabetic indi-
viduals selecting residence in relatively
more polluted neighborhoods. It is also
possible that the best institutions for dia-
betes care may be located in areas of high
pollution. Additional studies are war-
ranted to further elucidate this relation-
ship. Importantly, the study assesses 2
years independently for confirmation, yet
we are not able to draw any conclusions
regarding effects of sustained pollution
exposure over time or of prior exposure
on incident disease. This will be possi-
ble only when data have been available
over several years, permitting time-lag
analysis.

Our studies only capture diagnosed
cases of diabetes; 2007 estimates suggest
that there were 6.3 million adults in the
U.S. with undiagnosed diabetes (1). In
addition, our data do not distinguish be-
tween types 1 and 2 diabetes. However,
type 2 diabetes accounts for �90–95% of
all cases of diagnosed diabetes in U.S.
adults (1).

EPA air quality reference data report
the worst air quality monitor in each
county. To overcome potential biases in-
herent in such a measurement we re-
peated analyses using both the worst air
quality monitor in each county and the
average of the annual means of all moni-
tors in each county, with similar findings.
In the EPA-modeled datasets (36-km and
12-km), some error could be introduced
from the geospatial interpolation of the
two datasets within ArcGIS. In addition,
we could not verify the uniform distribu-
tion of pollution across our study areas
because we were limited by the resolution
of the EPA datasets and the placement of
ground monitors.

As noted earlier, we used 2005 health
insurance estimates for the 2004 analysis
because reliable county-level health in-
surance estimates for 2004 were unavail-
able. Furthermore, we used 2000 Census
data for 2004 and 2005 primary analyses
to expand our sample size, as 2004 and
2005 covariate data were not available for
all counties, whereas the 2000 Census
provided covariate data for all counties.

Thus, we assumed that the socioeco-
nomic and demographic profile of the
U.S. did not change dramatically between
2000 and 2004 and between 2000 and
2005. These were years of relative eco-
nomic stability in the U.S. However, re-
peat analysis with the more limited
datasets for the same year did not alter
conclusions.

Although this article focuses specifi-
cally on the relationship between PM2.5
and diabetes, other pollutants not men-
tioned here have been reported to share a
similar relationship with insulin resis-
tance and diabetes prevalence (21). Brook
et al. (21) previously observed a relation-
ship between NO2 exposure and diabetes
among patients with respiratory disease
in two Canadian cities. It is possible that
our analysis has omitted variable bias and
that other copollutants account in part for
the relationship between PM2.5 and
diabetes.

In this study, we demonstrate an in-
crease in diabetes risk even among areas
that are below the EPA legal limits for
PM2.5. Populations living in areas that are
near, but still below, the EPA limits show
a �20% higher diabetes prevalence com-
pared with those in cleaner areas. Al-
though EPA limits have resulted in
reduced exposure to PM2.5, workers who
commute experience highway levels of
PM2.5, that often exceed locally mea-
sured values (22). Although outside the
scope of our study, increasing commutes
for U.S. workers may contribute to
chronic disease through increased pollut-
ant exposure, in addition to increased
sedentary time, and reduced time for
physical activity (21). Outside the U.S.,
the risk may be far greater as air pollution
limits are often not enforced or are non-
existent, with some countries, notably in
Asia and Latin America, showing PM2.5
levels �10 times higher than the U.S. EPA
limits (25).

Our results, although associative,
demonstrate that additional research is
needed to understand the role that PM2.5
plays in the inflammatory pathway or
other pollution-mediated mechanisms
giving rise to diabetes. Such research
could lead to novel therapeutic ap-
proaches to reduce pollution-induced in-
flammation. Preventative measures
should be considered to reduce exposure
to PM2.5 from those at highest risk. Fur-
thermore, evidence based on this study
and others suggests that current limits on
particulate matter exposure may not ade-
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quately mitigate the public health
consequences.
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